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Symmetric diblock copolymers undergo a weakly first-order microphase separation transition to a lamellar
phase. In a thin film of thicknessd this transition is altered for two reasons: the film geometry imposes
commensurability restrictions on the concentration profiles, and the surface field favors one of the two blocks.
The latter effect dominates ford.j, where j is the correlation length nearTc . We construct a wetting
Hamiltonian, in which the slowly varying amplitudec(z) of the compositionc(z)52c(z)cos(q0z) is the order
parameter, and explore the changes in the profile induced by changes in temperature, surface field, andd/j.
The resulting phase diagram exhibits a line of first-order prewetting transitions ending in a critical point, and
a capillary condensation transition to an ordered film. Turning to commensurability effects, we compute the
ranges of thickness near half-integer numbers of layers for which the free surface of a copolymer film is
unstable to capillary waves, analogous to spinodal decomposition in two dimensions.
@S1063-651X~96!01409-2#

PACS number~s!: 61.41.1e, 61.30.Cz, 81.30.2t, 68.55.2a

I. INTRODUCTION

The isotropic-lamellar transition in diblock copolymer
melts has received considerable attention, both experimental
and theoretical, for two contradictory reasons. First, because
the lamellar phase seems at first sight the simplest possible
ordered mesophase and, second, because in fact the transition
is an unusual fluctuation-induced first-order transition, and
the ordered lamellar phase has all the richness with respect to
elasticity and dynamics of smectic liquid crystals, of which
lamellar phases are an example.

In this paper we are concerned with the ways in which the
behavior of diblock copolymer melts confined to a thin film
differs from the behavior of bulk samples. We may consider
films of a few layers or many layers in thickness, above or
below the bulk ordering transition, thick or thin with respect
to the correlation length, with or without surface fields that
prefer one of the two blocks of the diblock copolymer. We
may consider films of commensurate or incommensurate
thickness with respect to the lamellar order, and films con-
fined between two substrates or with a free surface.

These various cases are of interest because of the great
variety of possible ways a diblock melt might respond to

confinement into a thin film. All these phenomena can be
directly observed with reflectivity techniques, which have
been used extensively to study such copolymer films@1–5#.
Some of the phenomena we shall describe have been ob-
served experimentally, and some have yet to be observed but
surely must be present. We have tried to be imaginative with
regard to the behavior of lamellar films, but the films are
likely to be yet more resourceful.

Confinement of a diblock melt into a thin film has two
basic effects. The film boundaries inevitably impose some
surface field on the monomer concentration difference
c(r )5cA(r )2cB(r ). Also, the finite film thickness imposes
commensurability on the film if it is to order with lamellae
parallel to the film, as is favored by the presence of any
surface field. Many of the effects of surface fields and in-
commensurability on a thin film of a lamellar~or smectic!
fluid have been considered previously in Refs.@6–8#. Such a
film responds in several ways to these intrusions. At tem-
peratures above the temperature of the first-order ordering
transition temperature, surface fields induce some lamellar
order at the boundaries, which may penetrate across the film
if j*d, wherej is the correlation length for the decay of
oscillatory composition variations andd is the thickness of
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the film. If the film thickness is incommensurate with the
period of the bulk lamellar phase, and order does extend
across the film, then the film may either order at a nonopti-
mal wave number, which depresses the temperature of the
first-order transition, or may undergo a capillary-wave insta-
bility toward a state with an inhomogeneous film thickness.
The latter phenomenon is analogous to spinodal decomposi-
tion in two dimensions, with the thicknessd(xW ) of the film
playing the role of a conserved order parameter analogous to
the composition in a demixing binary fluid. At temperatures
near that of the bulk ordering transition, a small surface field
may have large effects, producing lamellar ordering at the
surface of an amplitude comparable to that of the bulk-
ordered state. Because the isotropic-smectic transition is first
order, a small surface field may also, in a phenomena analo-
gous to capillary condensation of a confined binary fluid
mixture, @9# induce order throughout a film of thickness
d@j at a transition temperature above that of the bulk tran-
sition.

This paper, which considers both surface field and com-
mensurability effects in various regimes, is organized as fol-
lows. In Sec. II, the basic results of the Brazovskii-
Fredrickson-Helfand theory of the bulk isotropic-lamellar
transition are reviewed. We show that the resulting bulk free
energy is very well approximated by an even, sixth-order
polynomial in the concentration differencec(r ), similiar to
that used previously by Fredrickson and Binder,@10# which
greatly simplifies the rest of our calculations.

In Sec. III, we compute the composition profile and free
energy of a thin film within a linear response approximation
appropriate to describing surface-induced order at tempera-
tures well above the bulk transition temperature. In this
weakly ordered regime, it is possible to calculate the profile
and free energy for any value ofd/j. The effects of com-
mensurability result in a free energy that is an oscillating
function of thicknessd, such that thin films near a half-
integer number of layers can be unstable to the growth of
capillary waves.

In Sec. IV, we develop an approach to lamellar phases in
thin-film geometries based on writing the concentration vari-
ablec(r ) as a slowly varying amplitudec(r ) times a cosine
wave with a slowly varying phasef(r ), and performing a
gradient expansion of the Brazovskii-Fredrickson-Helfand
free energy. This approach allows us to examine the forma-
tion of strong order~i.e., order of magnitude comparable to
that found in the bulk state near the bulk transition tempera-
ture! in any system in which bothd and j are significantly
larger than the bulk lamellar spacing. We check this ap-
proach first with a reexamination of the linear response re-
gime. The simplest case beyond linear response is that of a
strongly correlated film, withj@d, and no surface field, for
which the amplitudec(r ) is essentially uniform across the
film. Then the phase variable must ‘‘stretch’’ the wave num-
ber away from the preferred value to make the layering com-
mensurate with the film thickness. This results in an oscillat-
ing dependence of the ordering transition temperature on
thickness, as well as bands of thickness near half-integer
values that are again unstable to capillary waves.

In Sec. V, we develop analogies to prewetting phenomena
predicted by Cahn. Our gradient-expansion free energy re-
duces to a form similar to that of a binary fluid mixture, a

squared-gradient term plus a double-well potential, if the
spatial variation of the phase variable is neglected, which is
shown to be a reasonable approximation for any commensu-
rate film. A film of thicknessd@j will undergo a first-order
transition between a ‘‘disordered’’ state in which induced
lamellar order exists only near the walls and an ‘‘ordered’’
state in which lamellar order of magnitude similar to that of
the bulk ordered state extends throughout the film. Depend-
ing on the strength of the surface field, the amplitudec(z)
near either boundary at temperatures infinitesimally above
this ordering temperature may be in one of two states: ‘‘non-
wet,’’ or ‘‘wet:’’ In the nonwet state, the amplitude of in-
duced lamellar order is smaller than that in the bulk ordered
state and decays away within a bulk correlation length of the
boundary. In the wet state, the amplitude of induced lamellar
order at the boundaries exceeds the amplitude of the bulk
ordered state, and may persist a greater distance into the film.
In a semi-infinite film, the thickness of this wetting layer of
lamellar order diverges as the transition temperature is ap-
proached from above. At temperatures above the order-
disorder transition temperature, these two states are separated
in the (hs ,t) plane by a line of first-order prewetting transi-
tions, which terminates in a critical end point. In a film of
finite thickness, the wetting layers on the opposite bound-
aries may jump together discontinuously at a temperature
above that of the bulk transition. This shifting of the transi-
tion temperature, which is analogous to capillary condensa-
tion, occurs when the free energy cost of ordering the re-
maining material in the center of the film is less than the cost
of the two interfaces between surface-ordered material and
the disordered center.

In Sec. VI, we present some final remarks, areas for fur-
ther work, and suggestions for future experiments. Details of
the exact linear-response calculations, and the gradient ex-
pansion of the Brazovskii free energy, are presented in Ap-
pendices A and B, respectively.

II. ISOTROPIC-LAMELLAR TRANSITION

A. Brazovskii model

The isotropic-lamellar transition in diblock copolymers
has been analyzed theoretically by Brazovskii,@11# Leibler,
@12# and Fredrickson and Helfand@13#. Leibler developed
and analyzed the mean-field theory of a melt of diblock co-
polymers, which in the case of symmetric diblocks takes the
form

bHLeibler5
1

2E d3q

~2p!3n
G2~q!F~q!F~2q!

1
G4

4!nE d3r @F~r !#4, ~1!

plus higher order terms whose effects are unimportant at
temperatures very near the transition temperature. Here
F(r ) is the volume fraction of one of the two monomer
species andn is a monomeric volume. The quadratic coeffi-
cientG2(q)[S21(q)5S0

21(q)22x is the random phase ap-
proximation ~RPA! inverse structure factor. The ideal
(x50) inverse structure factorS0

21(q) can be approximated
near its minimum by
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S0
21~q!.

1

N
@20.9910.1481~x2x0!

2#,x[q2R2/6,

x053.785, ~2!

whereR2 is the mean-square end-to-end distance of the co-
polymer. The quartic term is approximated here by a local
interaction, in whichG45G4(qW 0 ,2qW 0 ,qW 0 ,2qW 0).156.56/N
denotes the value of the nonlocal quartic coupling appropri-
ate to bulk lamellar order at the preferred wave number.

Fredrickson and Helfand@13# put this effective Hamil-
tonian in the form of the effective Hamiltonian introduced by
Brazovskii,

Heff5
1

2E dq@t1~q2q0!
2#c~q!c~2q!1

l

4!E dr@c~r !#4.

~3!

For symmetric diblock copolymers, the various coefficients
are related to molecular parameters by@13#

t51.647~Nxc2Nx!/N̄,

Nxc510.495,

q0
2522.71/N̄, ~4!

l5106.18/N̄,

c~x!51.102F~x!

and all lengths are to be measured in terms of the micro-
scopic ‘‘packing length’’l p[(Nn)/R2, a length-independent
parameter that is the ratio of the displaced volume of a chain
Nn and the mean-square end-to-end distance. The quantity
N̄[R6/(Nn)2 is a measure of chain molecular weight. The
quantity t varies linearly withx ~which decreases with in-
creasing temperature! and may be assumed to increase lin-
early with increasing temperature over the small range of
temperatures near the transition temperature upon which we
will focus. This quantity will thus be used in what follows as
a measure of reduced temperature.

This effective Hamiltonian describes the lamellar ordering
of a scalar fieldc(r ) at a finite preferred wave numberq0,
without preference for the direction of the lamellar normals.
Because of this degeneracy in layering direction, a mean-
field treatment of Eq.~3! goes disastrously wrong, in the
following way: neglecting the nonlinear interaction through
the quartic term of independent lamellar fluctuations, the
mean-square fluctuation of concentration at a point in space
diverges ast→0,

^c2~0!&5E dq

t1~q2q0!
2'

q0
2

2pt1/2
. ~5!

Sincec(r ) must remain finite, the different lamellar fluctua-
tions must compete strongly through the quartic term as
t→0, no matter how smalll is. Brazovskii showed that the
leading behavior for smalll was captured by the use of a
self-consistent Hartree approximation, which is equivalent

@14# to approximating the probability distribution forc(q) by
a Gaussian, with statistical weights determined by applying
the variational theorem.

The inverse susceptibility obtained in this approximation
is, for both ordered or disordered states, of the form

g21~q![^dc~q!dc~2q!&215r1~q2q0!
2, ~6!

where dc(q)[c(q)2^c(q)&. The self-consistent equations
for r and for the bulk free-energy densityf B and its deriva-
tive h5(1/2)] f /]a are

r5t1al/Ar1la2,

h5ta1ala/Ar1la3/2, ~7!

f B52aAr2a2l/~2r !1ta21la4/4.

Here a is the amplitude of the assumed periodic order,
^c(r )&52acos(q0z), h is a field conjugate toa, and
a[q0

2/(4p).

B. Scaling behavior

Whenr , c, and f B are given in terms of the characteristic
units

r *[~la!2/3,

~a* !2[~r * /l!5a2/3l21/3, ~8!

f *[r * ~a* !25a4/3l1/3,

the self-consistent equations are of the same form as those
given in Eqs.~7!, but with l anda replaced by unity. Thus
the results in the scaled variablesr̃5r /r * , ã5a/a* , and
f̃5 f / f * are ‘‘universal’’ in the sense that they do not de-
pend on how nearly second order the transition is.

To compute the free energy densityf (t,a), one may
solve the first of Eqs.~7! for r (t,a), and substitute into the
last of Eqs.~7!. The resulting free energy develops a second
minimum for t less than the spinodal temperaturets , and
undergoes a first-order transition attc , with the amplitude
a jumping to a finite valueac . Numerical calculations give
the results

ts521.889r * , r dis~ts!50.224r * , r ord~ts!50.630r * ,

tc522.031r * , r dis~tc!50.201r * , r ord~ts!51.058r * ,
~9!

ac51.455a* .

For a given value of copolymer chain lengthN and hence
l, the various quantities associated with the first-order tran-
sition are determined. From the mapping from the Leibler
Hamiltonian to the Brazovskii Hamiltonian, the following
results are obtained@13#:

r *533.24N̄24/3,

~a* !250.313N̄21/3. ~10!
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Note that in the limit of long copolymer chains, the ampli-
tude of order at the transition vanishes asN21/3. This is the
measure of deviation from mean-field behavior; since the
relevant scale fort is xmf510.495/N, the relative size of the
non-mean-field region inx ~or temperature! is

~xc2xs!/xmf50.272N̄21/3. ~11!

A particularly useful way of characterizing the degree of
first-order behavior is in terms of (q0j* )

2[q0
2/r * , the char-

acteristic correlation lengthj*[1/Ar * at the transition in
units of the layer spacing.@From Eq.~6! we see thatr has the
interpretation ofj22, wherej is a fluctuation renormalized
correlation length.# From Eqs.~10! and ~4! we find

~q0j* !250.683N̄1/3. ~12!

Thus q0j* becomes large in the limit of largeN̄, which
implies nearly second-order behavior at the transition. For a
typical copolymer one might haveN̄ on the order of 104 and
hence (q0j* )

2'15, i.e., a characteristic correlation length
j* of about 0.61 in units of the lamellar periodl52p/q0. At
the transition, the disordered state correlation length is
jdis[@r dis(tc)/r * #21/2j* , which is 0.20121/252.23 times
larger.

C. Polynomial fit to f B„a…

It is convenient to have an approximate form for the Bra-
zovskii free energy that is more explicit than the solution of
the nonlinear equations Eqs.~7!. We might hope to represent
f B(c) as a polynomial inc, with coefficients depending lin-
early on the effective temperaturet near the transition. Since
the Hamiltonian is invariant under the symmetry
c(r )→2c(r ) or equivalentlya→2a, one might expect the
following polynomial approximation to be a sensible starting
point:

f B~a!' f p~a!5c1a
22c2a

41c3a
6. ~13!

Evidently, f p(a) has a minimum ata50 with the value
f p(0)50, corresponding to the disordered state. The three
coefficientsci can be chosen so thatf p(a) has a second
minimum at the correct ordered-state amplitudea5ac with
the correct valuef B(ac), and a maximum with the correct
value f B(am) at some lesser amplitudea5am to be adjusted.

Surprisingly, this procedure gives a very close fit to the nu-
merically evaluated Brazovskii free energy throughout the
interesting range of temperatures and amplitudes. A typical
fit is shown in Fig. 1. In fact, in the vicinity of the transition
the following expressions suffice for the$ci%:

c150.441@110.752~t1tc!#/ac
2 ,

c250.441@2210.910~t1tc!#/ac
4 , ~14!

c350.441@110.332~t1tc!#/ac
6 ,

where tc522.0305 andac51.445 are the transition tem-
perature and the amplitude at the transition. Note that at
t5tc , we havef p(a)50.441(a/ac)

2@12(a/ac)
2#2, which

clearly shows the double minima ata50 and a5ac . A
sixth-order polynomial approximation with slightly different
coefficients has been used previously by Fredrickson and
Binder @10#.

III. LINEAR RESPONSE

In this section we use a linear-response approximation to
describe the formation of weak surface-field-induced order at
temperatures above the bulk transition temperature. For this
purpose, we expand the concentration field in terms of nor-
malized cosines

c~x,z!5
1

Ad(
m,k'

c~m,k'! f m,k'~x,z!,

f m,k'~x,z![A2exp~ ikW'•xW !cos~pmz/d!. ~15!

Here the sum overm runs over the positive integers, andxW

andkW' represent vectors in thex-y plane. The expansion in
cosines automatically satisfies both the requirement that the
concentration field have zero integral~symmetric diblocks
having no excess of either type of monomer!, as well as the
reflecting boundary condition appropriate to melts confined
between surfaces.

The Brazovskii free energy to quadratic order inc is of
the form:

F5
1

2Ad(
m,k'

g21~m,k'!c~m,k'!c~m,2k'!, ~16!

whereg(m,k') denotes the value of the bulk structure factor
of Eq. ~6! evaluated at a wave vectorq5k'1 ẑkm , with
ki5pm/d.

We write the structure factor here in a slightly more
elaborate form:

g~m,k'!5
4q2

4q0
2r1~q22q0

2!2
, q2[k'

21km
2 ,

km[pm/d. ~17!

This reduces to the Brazovskii expression
g(q)5@r1(q2q0)

2#21 nearq5q0, but has two important
properties missing from that simple expression:~1! it is a
function of q2, not of uqu, the analyticity of which makes

FIG. 1. The Brazovskii free energy~shown here in the reduced
units defined in Sec. II B! is very closely approximated by a cubic
polynomial ina2, with coefficients that vary linearly witht through
the relevant range of temperatures betweents andtc .
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subsequent arithmetic nicer; and~2! it vanishes asq tends to
zero, which guarantees that there is no long-wavelength con-
centration variation~impossible in a symmetric diblock co-
polymer!. It has been pointed out by several authors@15,16#
that using an inverse structure factor of the form
g21(q)5Aq221Bq21C, which is equivalent to that given
above, also captures the correct algebraic forms of the RPA
structure factor in the limits of very high and very lowq and
yields a rather good fit to the full structure function over the
entire range ofq. Here, because we focus on behavior near
the critical temperature, where the composition field is domi-
nated by Fourier modes withq.q0, we fix the coefficients
A, B, andC so as to give exactly the desired positionq0 for
the minimum ofg21(q), and for the value and second de-
rivative with respect toq of g21(q) at its minimum.

Coupling to surface fields takes the form

Fsurface52E d2x@c~x,0!hl1c~x,d!hr #, ~18!

which becomes upon Fourier expansion

Fsurface52
A2
d (

m
c~m,0!@hl1~21!mhr #. ~19!

Herehl andhr are the surface fields at thez50 andz5d
interfaces, respectively. The linear response to these fields is

c~z!5
2

d(m cos~pmz/d!g~m,0!@hl1~21!mhr #. ~20!

The corresponding free energy is

F52
A

d(m g~m,0!@hl1~21!mhr #
2. ~21!

A. Results for profile and free energy

Using the form Eq.~17! for the structure factor, it is pos-
sible to evaluate the linear response profile and free energy
of Eqs.~20! and~21! exactly. This calculation is presented in
Appendix B, where we obtain the following results:

c~z!5~2j/q0!Re$ ihlkcosk~d2z!/sinkd

1 ihrkcoskz/sinkd%, ~22!

F52~Aj/q0!Re$ i ~hl
21hr

2!kcotkd12ihlhrkcsckd%,
~23!

with k given by

k2[q0
212iq0j

21. ~24!

This formula has several properties we expected of the
linear-response profile:~1! it evidently has zero integral over
the interval (0,d); ~2! it is invariant under the interchange of
the two interfaces,hl→hr andz→d2z. A typical profile for
d/ l510 andq0j55 is shown in Fig. 2.

In the limit j@q0
21, we can further simplify Eq.~22! by

approximating

k'q01 i j21. ~25!

Using this approximation, and expanding to leading order in
1/(q0j), we obtain for the case of a film of commensurate
thickness (q0d5np)

c~z!'@2j/sinh~d/j!#$hlcos@q~d2z!#cosh@~d2z!/j#

1hrcos~qz!cosh~z/j!%. ~26!

In a symmetric film, withhl5hr5hs , this yields

c~z!5$2jhs /sinh@d/~2j!#%cos@q~z2d/2!#cosh@~z

2d/2!/j#. ~27!

The behavior near a single interface atz50 can be ob-
tained by takingd@j,z andhr50 in Eq. ~22!, which yields

c~z!5~2j/q0!hlRe$ke
ikz%'2jhlcos~q0z!e2z/j. ~28!

The first line in Eq.~28! is the exact linear-response expres-
sion for a single interface, derived previously by Fredrick-
son, @16# while the second uses approximation Eq.~25! for
k, and shows that this profile is a damped exponential.

Use of the linear-response results makes sense only as
long as the induced amplitudec(z) remains small compared
to the amplitudeac of the ordered state at the transition
temperature, so that the value off B(c) can be approximated
by a harmonic expansion around the disordered minimum.
For the linear response to be valid, the surface fieldhs at
either boundary must thus satisfy

hs&hs*[a* /j*5a2/3l1/653.226N̄25/6, ~29!

where the last relation expresses the scaling ofcc andj near
the transition.

Assuming the linear-response regime can be achieved ex-
perimentally, Eq.~22! can be compared directly to experi-
mental concentration profiles obtained from reflectivity
@1,2,4#. One simple but important application of this com-
parison would be to measure the correlation length in a thick
film just above the bulk transition temperature, by comparing
the experimental profile to Eq.~28!. The large but finite
value of the correlation length at the transition is a key sig-

FIG. 2. Linear-response concentration profile for a film of thick-
nessd, with d/ l54 (l52p/d the lamellar period! and q0j*55.
The shaded curve is the approximate profile neglecting phase varia-
tions, and the dashed curve is the phase variation.
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nature of the Brazovskii theory. Reflectivity should afford
better resolution in determining the correlation length than
bulk small-angle neutron scattering.

Very crudely, a typical surface energy might be on the
order ofx per monomeric area on the interface, without spe-
cial efforts to make the surface neutral with respect to the
two blocks of the copolymer. In the vicinity of the order-
disorder transition, which is predicted in mean-field thory to
occur whenxN̄510.5, a typical surface energy might thus
be of order 10/N̄. This is to be compared to the characteristic
surface energyhs* a*5 f * j*5a51.807/N̄. This suggests
that without special efforts, surface fields at the transition
temperature might tend to be in the vicinity of the character-
istic fieldhs* . Existing neutron reflectivity experiments seem
to be close to this situation; in some cases, the surface fields
induce order with an amplitude comparable to that in the
bulk ordered state at the transition,@1# whereas in other cases
the surface fields induce order of distinctly weaker amplitude
@4#. Perhaps with some care in treating surfaces, smaller or
larger fields can be achieved, so that both the linear-response
and the saturation regime can be observed. Tunable surface
fields have been achieved in one copolymer system with sur-
face layers of random copolymers of controlled composition
@2#.

We now turn to the linear-response free energy, Eq.~23!.
This expression can be used to identify regions of layer
thicknessd that would be unstable to capillary waves, using
the criterion]2F/]d2,0. A plot of this linear-response free
energy for a symmetric film~with hl5hr) as a function of
d/ l ( l52p/q0), for q0j510, is shown in Fig. 3.

An important limit is the strongly correlated film
(d!j), for which it is simplest to begin again with Eqs.~20!
and ~21! for the concentration field and free energy. In the
limit d!j, the sums over modes are dominated by the term
with km closest to q0, i.e., for m5R(d/ l ), for which
g(m,0) is largest.@The operationR(x) denotes the nearest
integer tox.# Here we are assuming an even number of lay-
ers, in response to fields of the same sign on both surfaces.
The correspondingkm is given bykm5q01dq(d), where

dq~d!5q0FR~d/ l !

d/ l
21G . ~30!

This sawtooth variation in the wave number~or equivalently
the layer spacing! as the layer thickness is varied has been
observed in reflectivity experiments and discussed previ-
ously @2#.

The corresponding expressions for the concentration field
and the free energy in this strongly correlated limit are

c~z!'
2

d
~hl1hr !

cos$@q01dq~d!#z%

r1@dq~d!#2
, ~31!

F'2
A

d

~hl1hr !
2

r1@dq~d!#2
. ~32!

B. Capillary-wave instabilities

The variation of the linear-response free energy with film
thickness can induce instabilities to capillary waves even at
temperatures above the transition temperature. This phenom-
enon has previously been considered theoretically by Shull
in numerical mean-field calculations@17#. As discussed in
the Introduction, the instability is analogous to spinodal de-
composition in the bulk; ordered films of even slightly in-
commensurate uniform thickness can be thermodynamically
unstable towards the formation of a two-dimensionally
‘‘phase separated’’ state in which one ‘‘island’’ or ‘‘hole’’
takes up the excess or missing material. The formation of
such islands and holes may either be nucleated or grow spon-
taneously from capillary waves. The coarsening of these is-
lands and holes has been extensively studied experimentally,
@18,19# but the early stages of island-hole formation have
received less attention.

The instability condition for the growth of capillary waves
on the surface of the film is that the free energy per unit area
as a function of film thickness be ‘‘concave downwards,’’
]2DF/]d2,0. Figure 3 showsDF(d) of Eq. ~23!, together
with the regions of instability, for a value ofq0j510.

Note that the regions of stability are independent of the
strength of the surface field, which may at first sight seem a
strange result. Consider the stabilizing effects of gravity and
surface tension. The free energy per unit area of a capillary
waveh(x)52hqcos(qx) becomes

Fcap5@F9~d!/A1rg1gq2#hq
2 . ~33!

Hence, whenF9(d)/A1rg,0, spinodal instabilities will
occur for wave numbers satisfying

q2,@F9~d!/A1rg#/g. ~34!

We now estimate the relative magnitudes of the curvature
F9(d)/A of the free energy and the gravitational termrg. In
the strongly correlated limit, the scale ofF9(d)/A from Eqs.
~30! and ~32! turns out to be F9(d)/A
;(hs

2j2/d)(d/ l )2(1/j2). Note that the free energy per area
itself from Eq. ~32! scales asF(d)/A;(hs

2j2/d). At the
characteristic valueshs5hs* andj5j* , the free energy per
area is of orderF(d)/A' f * j* (j* /d)51.805/N̄(j* /d). To
return to physical units~cgs!, we multiply by kBT/ l p

2

'5310214/(231028)25125.
Assuming typical values for a relatively thin, strongly or-

dered film ofd/ l55, j/d55, N̄5103, and l5300 Å, we

FIG. 3. Linear-response free energy per area as a function of
film thicknessd, with q0j510. Regions unstable to capillary waves
are shaded.
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find F(d)/A;1 erg/cm2 and F9(d)/A.(25 erg/cm2)/
j2.53109 erg/cm4. This is much larger thanrg.103

erg/cm4, so the effects of gravity can be completely ignored.
Using the same values ford/ l , j/d, and N̄ and a typical
value ofg.10 erg/cm2 for the surface tension, we obtain a
critical value ofqc

25F9(d)/(Ag).2.5/j2. Hence the upper
cutoff to unstable capillary waves, for surface fields of the
order of the characteristic fieldhs* is of order the inverse
characteristic correlation length 1/j* .

Experimentally, there are no reports to date of capillary-
wave instabilities in advance of the ordering transition in the
film. Simultaneous specular reflectivity and grazing inci-
dence diffraction measurements would be required to look
for film ordering~or lack of it! and surface roughening due to
capillary waves. There is general indirect evidence for a
spinodal route to the formation of islands and holes on the
surface of copolymer thin films, in that films near a half-
integer number of layers have been reported to take much
less time to exhibit islands and holes than is required for
films near an integer number of layers~for which island and
hole formation is presumably nucleated! @20#.

IV. GRADIENT EXPANSION

The behavior of thin films of diblock copolymer lamellar
phases is one of a class of problems in which spatial inho-
mogeneity is present, either because of the geometry or be-
cause of imposed spatially varying fields such as surface
fields. In these problems, we expect the amplitude of mi-
crophase separation to vary in space, with distance from the
surfaces or other localized disturbances.

If the degree of microphase ordering varies slowly in
space, we expect that the free energy is well represented by a
gradient expansion, in which we represent the microphase
separation in terms of its amplitudec(r ) and phasef(r ):

c~r !5c~r !@eiq0z1 if~r !1c.c.#. ~35!

The fast spatial variation ofc(r ) on the scaleq0
21 is con-

tained in the oscillating phase factor exp(iqW0•rW); c(r ) and
f(r ), respectively, represent slow variations in the ampli-
tude or phase of the microphase separationc(r ).

The free energy functionalF@c(r ),f(r )# then takes the
form

F@c~r !,f~r !#5E drH f B~c!1mz~c!S ]c

]z D
2

1m'~c!

3~¹'c!21B~c!S ]f

]z D 21k~c!~¹'
2f!2

1•••2@hld~z!1hrd~z2d!#

32ccos~q0z1f!J . ~36!

Here f B(c) is the Brazovskii free energy of a uniformly
ordered state of amplitudec, i.e., the solution from Eqs.~7!.
The final term represents the surface fieldshl andhr on the
two interfaces.

The coefficientsm(c), B(c), andk(c) can be calculated
systematically from the Brazovskii Hamiltonian Eq.~3!. The

coefficientsB(c) and k(c) are the smectic compressional
and bending moduli~taken at fixed amplitudec). They arise
from substituting the form Eq.~35! into the Brazovskii free
energyf B(a) and expanding the gradient terms; the absence
of a term (¹'f)2 is dictated by rotational invariance@22#.
We are concerned in this paper only with variations along
the layering directionẑ, som' andk are not of interest.

It is easy to show, by considering the Brazovskii free
energy for a state that is ordered at a wave numberq differ-
ing slightly fromq0, thatB(c)5c2 exactly. The calculation
of the coefficientmz(c) is more involved, and is presented in
Appendix A by carrying out a gradient expansion of the
Brazovskii ~or Hartree! free energy of an inhomogeneous
system. The essential result is thatmz(c) varies by only 20%
asc ranges from zero toac , the amplitude at the bulk first-
order transition, and thatmz(0)51. Having taken pains to
computemz(c) carefully, for simplicity we approximate
mz(c).mz(0)51 in what follows. With this approximation
for mz , the free energy per unit area for a thin film can be
written with surface field terms as

F/A5E dzH f B~ uCu!1U dC~z!

dz U2J 22 Re$hlc~0!

1hrc~d!eiq0d%, ~37!

whereC(z)[c(z)eif(z) is a single complex order param-
eter.

The gradient expansion is well controlled, for the varia-
tions of c at least, for sufficiently weakly first-order transi-
tions. The usual argument applies: successive terms in the
gradient expansion are multiplied by additional powers of
some length, which should be of the order ofl;q0

21. Then,
since the transition is weakly first order, the first two terms in
the gradient expansion, of form (r1q2)c(q)c(2q), deter-
mine a correlation lengthj5r21/2, which is large compared
to l . Then asc varies on the scalej, higher-order terms in
the gradient expansion will be smaller by powers of
1/(q0j)!1.

Recall that the application of the self-consistent Hartree
approximation to the Brazovskii Hamiltonian Eq.~3! is only
justified when the transition is nearly second order, for which
the correlation length at the transitionjc is large compared to
the microphase period, orq0jc@1. Consequently, the use of
a gradient expansion will be valid in almost all cases where
the use of Brazovskii’s approximation for the free energy is
itself valid. For the self-consistent Hartree approximation to
apply to a film of thicknessd, we must have one of the
following cases:~1! 1/q0!j!d, so the film is many layers
thick and the two surfaces of the film do not communicate,
and we have essentially a semi-infinite slab.~2!
1/q0!j'd, so the order extends across the middle of the
film, but is not uniform, and the film remains many layers
thick. ~3! 1/q0&d!j, in which case the film may be only a
few layers thick but the entire film is strongly correlated and
so the amplitudec(r ) must be spatially uniform. If we con-
sider the case of a film withj&1/q0, such a correlation
length is too short for the self-consistent Hartree approxima-
tion to apply. In the limit of very long polymers, however,
such short correlation lengths occur only at temperatures
well above the ordering transition, at temperatures for which
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the effects of fluctuations become small. However, since the
self-consistent Hartree approximation reduces to Leibler’s
mean-field approximation in the limit of high temperatures,
this case can often be treated as well.

Note that the variablesc(z) andf(z) must satisfy a con-
straint,

E dzc~z!50, ~38!

on the average composition of the film, which must vanish
because we consider symmetric copolymers for which there
can be no excess ofA or B monomers. This constraint must
be added explicitly because the gradient expansion of the
free energy~unlike the linear response approximation of Sec.
III ! does not by itself contain enough information about
chain stretching energies to rigorously exclude states that do
not satisfy this constraint. We note, however, that when
c(z) andf(z) are very slowly varying functions~as is as-
sumed in the use of a gradient expansion! then the contribu-
tions to Eq.~38! from regions far from the walls of the film
will automatically be small due to the rapid oscillation of
c(z) and the resulting cancellation of regions of positive and
negativec. The most important contributions to Eq.~38!
arise instead from regions within a half-period of either
boundary, where this cancellation is destroyed by the pres-
ence of a sharp wall. In the limitq0@j21 in whichc(z) and
f(z) remain nearly constant over distances of order 1/q0, the
constraint can be satisfied only by taking the values of the
phase angle

u~z![q0z1f~z! ~39!

at each boundary to be very close to some integer multiple of
p.

This observation can be made more precise by repeatedly
integrating Eq.~38! by parts to generate a power series

05ReFeiq0ziq0
C~z!1

eiq0z

q0
2 C8~z!1••• GU

z50
z5d

~40!

for the integral in powers of 1/q0, or, more precisely, in
powers of the operatorq0

21d/dz acting on the complex vari-
ableC(z).

To lowest order in 1/q0 Eq. ~40! is satisfied by taking
sin(u)50 at both boundaries. At the next order in 1/q0, Eq.
~40! yields boundary conditions atz50 andz5d:

05Re$C8~0!2 iq0C~0!%,

05Re$@C8~d!2 iq0C~d!#eiq0d%. ~41!

Here we have assumed that the contributions from each
boundary must vanish independently, since it is unphysical
in a system of copolymers to satisfy the integral constraint
by transferring excessA or B monomers from one side of the
film to the other.

Within the context of a gradient expansion forF, it is
sufficient to replace the full constraint Eq.~38! by the first
few terms in the expansion Eq.~40!, which constrains only
the surface values and derivatives ofc(z) and f(z). We
introduce the constraints of Eq.~41! into the free energy Eq.

~37! by means of Lagrange multipliersl l andl r multiplying
the right-hand sides of Eq.~41! and subtracting fromF/A.

We then minimize the free energy with an added con-
straint term with respect toC ~we vary with respect to
C* , and takeC andC* to be independent variables!, gen-
erating Euler-Lagrange equations

05C
d fB~ uCu!
duCu2

2
d2C

dz2
. ~42!

In terms ofc andf these Euler-Lagrange equations take the
form

05
d fB
dc

12cS df

dzD
2

22
d2c

dz2
, ~43!

05
d

dzS c2
df

dzD . ~44!

The boundary conditions arise from varying the surface
field and Lagrange-multiplier terms, and from the boundary
term in the variation ofudC/dzu2, taking the form

05C8~d!e2 iq0d2~hr1 il r !, 05C8~0!1~hl2 il l !.
~45!

The imaginary parts of these equations merely determine the
values ofl l andl r ; the real parts give a physical boundary
condition

Re@C8~d!eiq0d#5hr , Re@C8~0!#52hl . ~46!

From Eqs.~46! and ~41! we can derive the boundary condi-
tion on the concentrationc(z)52Re(Ceiq0z) itself, which is

c8~d!54hr , c8~0!524hl , ~47!

which is the same as the result derived from the exact linear-
response solution of Eq.~22!.

For simplicity, we will herafter focus on the case of a
symmetric film, with equal surface fieldshl5hr5hs on ei-
ther boundary. Cases in which the film has different, and
possibly competitive, surface fields are expected to produce a
somewhat richer set of phenomena, some of which have
been discussed previously in the context of confined binary-
fluid mixtures in Ref.@21#.

The coupled differential equations~43! and~44! cannot in
general be solved analytically. The phasef(z) can be ex-
pressed in terms ofc(z) by solving the linear differential
equation~44!, to obtain

f~z!5cE
d/2

z dz8

c2~z8!
1f~d/2!, ~48!

where c is an integration constant chosen to satisfy the
boundary conditions onc andf. @We have integrated from
d/2 to z because in symmetric films we havef(d/2)50.#

Qualitatively, the phase variation is required to give zero
concentration integral, and varies most rapidly where phase
variation is cheapest, namely, wherec(z) is small. If c(z)
vanishes or nearly vanishes somewhere in the middle of the
film ~as can occur whent.tc andd@j), then essentially all
of the phase variation happens there, with the result that the
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phase shift is nearly constant within each half of the film,
and changes rapidly in the middle. This is the limit of two
noninteracting wetting layers. If on the other hand the film is
strongly correlated so thatc(z) is nearly uniform across the
film ~as will occur if j@d) thenf(z) will vary essentially
linearly with z.

The magnitude of the total change inf(z) from one side
of the film to the other depends strongly upon whether the
film thickness is commensurate or incommensurate with the
preferred lamellar spacing 2p/q0. If the film is commensu-
rate, thenf(z) is forced to be nonzero only by the effects of
constraint Eq.~38!, which by itself yields small boundary
values forf(z), as given by Eq.~41!, of order 1/(q0j). If the
film is incommensurate, however, then in order to obtain
values ofu(z) that are nearly integer multiples ofp at the
boundaries, we must havef(0).0 and f(d).zdq(d)
@wheredq(d) is defined in Eq.~30!#, thus yielding a total
phase shift of order unity.

In the next two subsections, we consider two cases in
which relatively simple approximations for the profile and
free energy can be obtained analytically. In subsection A, we
discuss the behavior of weakly ordered films, and recover the
basic results of the linear-response theory of Sec. III. In sub-
section B, we discuss the case of a strongly correlated
(j@d) incommensurate film.

A. Linear response revisited

The simplest applications of the gradient expansion occur
for weak surface fieldshs , in which the effect ofhs can be
computed perturbatively. In the case of a commensurate film,
we take advantage of the expected smallness of the phase
variablef(z) by first solving forc(z) in an approximation
in which we ignore the effects of a nonzerof(z), and then
consider the perturbative effects of the phase variation after-
ward. Within linear response, the order induced by surface
fields at temperatures aboveTc in a film of thicknessd
(0,z,d), are then described by the solution of

052]2c/]z21rc2hs@d~z!1d~z2d!#. ~49!

~Hereẑ is the direction normal to the film, and we have taken
for simplicity equal left and right surface fields,
hl5hr5hs .)

The surface-field terms establish the boundary condition
on c(z) ~to see this, integrate Eq.~49! over a small interval
containing the surface! as

]c/]zuz5052hs , ]c/]zuz5d5hs . ~50!

The solution to Eqs.~49! and ~50! is simply

c~z!5hsj
cosh@~z2d/2!/j#

sinh~d/2j!
. ~51!

This solution corresponds to the approximate linear-response
result Eq.~27! of Sec. III ~where phase effects were also
neglected, since a commensurate film withq0j@1 was as-
sumed!. In the limit that the film is very thick, the amplitude
reduces to a decaying exponential at each surface,
c(z)'hsjexp(2z/j).

We now consider the effect on these results of the terms
in Eqs.~43!–~44! involving the phase gradients. Combining
boundary condition Eqs.~41! and ~48! yields

f~z!5
2c8~0!

q0c~0!

*d/2
z dz8/@c~z8!#2

*0
ddz8/@c~z8!#2

. ~52!

In practice, the effects on the concentration profile of phase
shifts for commensurate films are always quite small, and
probably not observable. Figure 2 shows the exact linear-
response profile for a four-layer film withqj55, compared
to the linear-response profile before phase correction, Eq.
~51!. As is evident from the figure, this is a very short cor-
relation length, for which the gradient expansion in 1/q and
the zero-integral constraint on the uncorrected profile might
be expected to be in error. The first phase correction, using
the phase from Eq.~52! ~integrated numerically!, is shown as
the dashed line. Even for this case, the phase variation is less
than 0.2 rad. The concentration profile computed using the
amplitude variation Eq.~51! and the phase correction Eq.
~52! would be indistinguishable from the exact profile in this
figure.

If the film is incommensurate, there is a competition be-
tween the constraints imposed upon the boundary values of
the phase by the integral constraint and the surface fields,
and the cost of distorting the wave number in the ordered
portions of the film. Ifj andd are of comparable magnitude,
this leads even in the linear response regime to coupled
equations forc(d) andf(d) that cannot be solved analyti-
cally. If j!d, so that ordered regions near both boundaries
are separated by a region of nearly vanishingc, than this
frustration can be relieved by allowingf to take a rapid
jump between its boundary values off(0).0 and
f(d).ddq(d) over a region of widthj in the middle of the
film. If j@d, so thatc(z) is nearly constant across the film,
we instead expect a linear variation

f~z!5zdq~d!5zq0FR~d/ l !

d/ l
21G ~53!

of the phase to ‘‘stretch’’ or ‘‘compress’’ the wave number
to a commensurate value. This is precisely the behavior
found experimentally in Ref.@2#, and reproduced in Sec. III
in the strongly correlated limit, Eq.~32!.

From Eq.~36!, we see that such a phase variation imposes
an additional costc2@dq(d)#2 in the free energy density,
which amounts to replacing the inverse susceptibilityr by
r1@dq(d)#2. So the induced spatially uniform amplitude
and linear-response free energy in this case become

c5hs /$r1@dq~d!#2%1/2,

DF522hs
2/$r1@dq~d!#2%1/2, ~54!

which are precisely the results of Eq.~32!.

B. Tc shifts „j@d…

The simplest case in which to consider the effects of com-
mensurability beyond linear response, as is required to ad-
dress shifts in the first-order transition temperature, is a
strongly correlated film in whichj@d. Then it is clear that
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the amplitudec(z) is independent ofz, and the phase
f(z) varies linearly as given by Eq.~53!.

In the absence of surface fields, the free energy per unit
volume of Eq.~37! then becomes

f5 f B~c!1c2@dq~d!#2. ~55!

The stretching of the phase to give commensurability and
thus zero concentration integral gives ad-dependent qua-
dratic shift in the free energy density. Recall thatf B(c) is
very well represented by the sixth-order polynomialf p(c) of
Eq. ~13!. If only the quadratic coefficientc1 of f p varied
significantly with temperature near the transition~which is
the natural simplification for second-order transitions, since
there the quadratic coefficient vanishes!, then the commen-
surability effects would amount to a shift inT2Tc . How-
ever, at a first-order transition, none of the coefficients$ci% is
vanishing, and so we cannot argue that the temperature
variation of the quadratic term is dominant.

Instead, we simply replacef B(c) with f p(c) in Eq. ~55!,
and compute the resulting spinodal and transition tempera-
tures as a function ofd. The size of the commensurability-
induced shifts intc andts depends on the near divergence in
the correlation length, which can be characterized byq0j* as
discussed in Sec. II B. The results are shown in Fig. 4, for
q0j*55. Note that the effects of commensurability are most
pronounced for the thinnest films, as one would expect; it is
progressively easier for the phase to adjust the film thickness
by at most half a layer, as the film is made thicker. Note that
the variations in the transition and spinodal temperatures as a
function of film thickness can be quite large on the scale of
the differencets2tc . In other words, if an experiment can
resolve the difference between the bulk spinodal and transi-
tion temperatures, it has sufficient temperature resolution to
see the commensurability-induced shifts in the transition
temperature.

These commensurability effects also give rise to
capillary-wave instabilities of the ordered phase, since its
free energy per unit area becomes an oscillating function of
the film thickness. The film free energy per area as a function
of d can be shown to be concave down and hence unstable in
regions ofd near half-integer layer thickness. We have im-

plicitly assumed here that there is some surface field acting
that selects one of the two blocks at the surface. If the sur-
face field were strictly zero, either block could appear at
either surface, and the film would be commensurate if it were
a half-integer number of layers thick. Then Eq.~53! would
be replaced by a similar expression withl replaced byl /2.

The width of the unstable regions depends on the tem-
perature, and can be defined for any temperature below the
spinodal temperaturets at which a second minimum in the
free energy first appears. In the region in thet-d plane above
the shaded curve in Fig. 4, the~metastable! ordered state is
unstable to capillary waves.

Note that within the gradient-expansion picture, there is
no spinodal instability of thedisorderedphase withhs50,
since the free energy is just that of the bulk disordered phase
independent ofd. This misses some interesting physics,
however, which can be recovered in a self-consistent Hartree
approximation applied directly to a film of finite thickness:
capillary-wave instabilities can result from commensurability
effects on the fluctuation spectrum and hence the free energy
of the disordered phase even withhs50 @23#.

The effects of commensurability remain qualitatively
similar in the presence of a moderate surface field. The free
energy per unit volume of a strongly correlated film with
surface fieldshs5hl5hr can be written as

f5 f B~c!1c2@dq~d!#224chs /d, ~56!

where the last term represents the contribution of the surface
field. This is the free energy of a Brazovskii model with a
shifted quadratic coefficient in the presence of an effective
bulk field

heff52hs /d ~57!

conjugate to the uniform amplitudec5a.
In a commensurate film, withdq(d)50, the effect of

such aneffectivebulk symmetry breaking field is to produce
a nonzero value forc in the disordered state and to decrease
the value ofc in the ordered state just below the transition
temperature, thus decreasing the discontinuity inc at the
transition, and also to raise somewhat the transition tempera-
ture.

FIG. 4. In strongly correlated incommensurate films (j@d)
with no surface field, the phasef(z) varies linearly to enforce the
zero-integral constraint. The result is thattc(d) and ts(d) ~upper
and lower dark curves, plotted in dimensionless units defined in
Sec. II B! are oscillating functions ofd. Above the shaded curve,
the ordered state where it exists is unstable to capillary waves. Here
q0j55.

FIG. 5. The phase behavior of the Brazovskii model in the pres-
ence of a nonzero field conjugates to the amplitudea, in the dimen-
sionless units defined in Sec. II B. The line of first-order transitions
~solid! and the corresponding spinodals~metastability limits of the
ordered and disordered phases! ~dotted! meet at a critical point,
h50.114h* , t521.64r * .
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For strong enoughheff , the discontinuity disappears com-
pletely, thus causing the line of first-order transitions in the
(heff-t) plane to end at a critical point

hcrit50.114h* , tcrit521.64r * ~58!

with heff5hcrit of order the characteristic value effective bulk
field h*[a* /j* 2. The corresponding phase behavior for a
commensurate field with a free energy density of form~56! is
shown in Fig. 5, where the first-order transition is shown as
a solid line and the corresponding spinodals~limits of meta-
stability of the ordered and disordered phases! are shown as
dotted lines. The existence of a critical point implies that the
presence of a sufficiently large surface field, large enough so
that heff(d).hcrit , will destroy the discontinuous transition,
leading instead to a smooth evolution of the degree of order
with decreasing temperature.

For 0,uheffu,hcrit , the transition temperaturetc(h) var-
ies almost exactly linearly with heff from
tc(heff50)522.03r * to tc(hcrit)[tcrit . This nearly linear
variation of tc with the strength of the effective bulk field,
together with the 1/d dependence ofheff upond suggests that
the transition temperature for strongly correlated commensu-
rate films with different numbers of layers should vary as

tc~d!2tc
bulk}hs /d ~59!

for heff,hcrit .
The d dependence of the critical temperature in a set of

films with a fixed surface field, withhs small enough so that
heff,hcrit for the thicknesses of interest, is given by a com-
bination of the two effects described above. The transition
temperature oscillates withd in a manner similar to that
predicted forhs50, but the maxima oftc at commensurate
values ofd are always somewhat higher than the bulk tran-
sition temperature and less thantcrit , with a slow variation of
tc at consecutive maxima given by Eq.~59!.

V. WETTING ANALOGIES

We return now to films of commensurate thickness, but
with surface fieldshs that may be strong enough so that
linear response calculations are inadequate. Because of the
discussion and examples of Sec. IV, we neglect the phase
variable. Then we recover a variation on a classical problem,
that of wetting phenomena in a finite slab between two sur-
faces of a mixture of liquids near the demixing critical point.
The amplitudec(z) plays the role of the concentration vari-
able in the two-fluid problem. The free energy density Eq.
~36! is of precisely the form considered by Cahn in his semi-
nal works on prewetting phenomena near the liquid-liquid
critical point, @24,25# a square-gradient term plus a free en-
ergy function with two competing minima.

There are several important differences between the case
of copolymer thin films and the systems considered in Refs.
@24,25#. Our order parameter@the amplitudec(z)# is not
conserved, which has two immediate consequences. First,
there can be coexistence between ordered and disordered co-
polymer phases only at a temperature exactly equal to the
transition temperature, making coexistence unlikely to be ob-
served in practice.~In the case of a two-fluid mixture, two
phases can coexist with different amounts of fluidA, and the

corresponding chemical potential equal in the two phases,
allowing coexistence to occur over a nonzero range of tem-
peratures, and to thus be easily observed.! Second, the dy-
namical behavior of our nonconserved order parameter is
qualitatively different from that of a conserved order param-
eter: Material does not have to be transported large distances
to relax a slowly varying amplitude profile, as it does for a
conserved order parameter. Finally, our free energy density
is of a different form from the canonicaltc21ac31bc4

considered in Ref.@24#, which leads to differences in the
shape of interfacial profiles.

A. A single interface

We now review briefly Cahn’s results for a binary fluid
mixture with a single boundary at which a surface field is
applied. The free energy per unit area is that of Eq.~36!
without the phase terms,

F5E
0

`

dz@ f B„c~z!…1@c8~z!#222hsd~z!c~z!#. ~60!

By measuring distances in units ofj* , concentration ampli-
tudec in units ofa* , free energy density in units off * , and
surface field in units ofhs* we can reduce Eq.~60! to a
‘‘universal’’ form. Thus we can give a universal prewetting
phase diagram, as a function of reduced temperaturet, nor-
malized surface field strengthhs /hs* and film thickness
d/j* when we consider films of finite thickness.

The optimum profile minimizesF,

05
] f B
]c

22c922hsd~z!. ~61!

Integrating over thed function gives the boundary condition

c8~z!uz5052hs . ~62!

Away from the boundary, Eq.~61! has a first integral,

c5@c8~z!#22 f B„c~z!…, ~63!

wherec is a constant to be determined.

FIG. 6. A plot of the Cahn construction,@ f B(c)#
1/2 vs c, in

dimensionless units, for a reduced temperature
tc,t522.0r *,ts , with values ofhs ~horizontal lines! corre-
sponding to the spinodalshsw andhsn of the wet and nonwet states,
and to the prewetting transition fieldhc .
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For a semi-infinite system above the bulk transition tem-
perature, we havec5c850 far from the interface, and so
c50 in Eq. ~63!. Then we have

c8~z!5@ f b„c~z!…#1/2, ~64!

which can be used to compute the shape of the profile. This
result can also be used to eliminate the need to know the
shape of the profile if all we want is to compute the free
energy of the interface; using Eq.~64! we have

F„c~0!…52E
0

c~0!

dc@Af B„c~z!…2hs#. ~65!

This key result of Ref.@24# leads to a graphical represen-
tation of the possible amplitude profiles at the interface and
their free energies. Figure 6 shows a typical graph of
c85Af B(c) as a function ofc for some temperature~or
effective temperaturet) below the spinodal temperature at
which a second metastable minima appears inf B , and hence
in Af B ~i.e., t,ts), but above the bulk transition tempera-
ture ~i.e., t.tc). A horizontal line represents a value of
surface fieldhs ; the intersections with the curve give pos-
sible values ofc(0) for which Eq.~62! is satisfied.

For hsw,h,hsn , there are three such intersections, cor-
responding to three values ofc(0) and hence to three dis-
tinct profilesc(z) for which the free energy is stationary
under perturbations. The largest value ofc(0) is slightly
larger than that of ordered-phase minima inf B(c), and cor-
responds to a profile that as the temperatures approaches the
bulk transition temperature evolves into one in which there
exists a well-defined ‘‘wetting layer’’ of bulklike lamellar
order near the boundary, in which the value ofc remains
near that in the bulk ordered phase, with a thickness that
diverges continuously as the transition temperature is ap-
proached from above. The middle intersection can be shown
to correspond to a local maximum in the free energy, rather
than a local minima, and is thus not a physically relevant
state. The smallest value ofc(0) is similar in magnitude to
that which would be predicted by linear-response theory, and
corresponds to a profile in whichc(z) decays to zero within
about a bulk correlation length of the boundary even at the
transition temperature. We will refer to the two solutions
corresponding to local free energy minima~throughout the
range of reduced temperaturestc,t,ts for which two such
solutions exist! as the ‘‘wet’’ ~i.e., interface is wet by the
ordered lamellar phase! and ‘‘nonwet’’ ~interface is not wet
by the ordered phase! states, and to the corresponding values
of c at the boundary ascwet andcnonwet. Our use of ‘‘wet’’
and ‘‘nonwet’’ to describe states at temperatures slightly
above the transition temperature is adopted for simplicity,
but, it should be noted, is a slight generalization of conven-
tional nomenclature for wetting, which holds that a state can
be described as ‘‘wet’’ only when there exists a macroscopi-
cally thick wetting layer, which can occur only exactly at the
transition temperature@25#.

Twice the integrated area between the curvec8(c) and
the horizontal line, fromc50 to c5c(0), is exactly the
free energy of Eq.~65!. From this, it is easy to confirm that
the middle intersection point corresponds to a maximum in

F„c(0)…, while the other states correspond to local minima.
The valuehc is special in that the free energies of these two
states are equal,

F~cnonwet!5F~cwet!. ~66!

Graphically, this corresponds to the zero total area between
the line and curve fromcnonwet to cwet. Thushc(t) is a line
of first-order phase transitions between the wet and nonwet
states; forhs.hc (hs,hc) the wet~nonwet! state is stable.

The surface fieldshsw andhsn correspond, respectively, to
the limits of metastability~spinodals! for the wet and nonwet
states, since forh.hsn (h,hsw) the nonwet~wet! state does
not exist. As the temperature is increased to the spinodal
temperaturets , the maximum and minimum inf B and hence
in Af B merge, as the values ofhc , hsn , and hsw become
equal. This is the prewetting critical point.

The values ofhsn and hsw can be found explicitly as
Af B(csn) andAf B(csw), with (csn)

2 and (csw)
2 the solu-

tions of

05 f B8 ~c!52c$c112c2c
213c3c

4%, ~67!

where we have approximated the bulk free energy density
f B(c) by the polynomialf p(c) given in Eq.~13!. The inte-
gral *dcAf p(c) can be done analytically, and the value of
hc(t) found by solving Eqs.~66! and~62! numerically. The
resulting phase diagram is shown in Fig. 7. The critical end
point is located att5ts , hs50.308hs* .

B. Two interfaces

Sadly, much of this elegant analysis is no longer possible
when a film of finite thickness is considered. The reason is
that the argument following Eq.~63! that the constant ap-
pearing there vanishes, no longer applies, because the ampli-
tude need not vanish at the center of the slab.~This situation
has been considered previously by Nakanishi and Fisher,
@26# in the context of thin films of binary fluid mixtures.!
Since we do not know the value ofc(d/2) a priori, we
cannot compute the free energy without knowing a bit more
about the profilec(z).

FIG. 7. For a single interface, or an infinite film, the Cahn con-
struction with the Brazovskii free energy gives rise to the prewet-
ting phase diagram shown here, in dimensionless units. The solid
line represents the prewetting transition and the dotted lines the
spinodals of the two competing surface profiles. The critical point is
at t5ts , hs50.308hs* .
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The alternative is a more intensively numerical calcula-
tion. We replace Eq.~64! with

c8~z!5$@ f b~c~z!!1c#%1/2, ~68!

wherec is a constant whose value must be determined nu-
merically. In principle, we adjust the values ofc(0),
c(d/2), andc for a givent, hs , and film thicknessd so that
the profilec(z) has the~1! proper boundary condition at
z50 andz5d, ~2! zero slope in the middle atz5d/2, and
~3! the proper thickness:

c8~0!5hs implies hs
25 f b„c~0!…1c,

~69!
c8~d/2!50 implies 05 f b„c~d/2!…1c,

d52E
c~d/2!

c~0!

dc/c8~z!52E
c~d/2!

c~0!

dc/$@ f b~c!1c#%1/2.

Multiple states~wetting, nonwetting, and ordered! and
hence multiple values ofc(0), c(d/2), andc are expected
for some values oft, hs , andd. In practice, to find these
states requires sensible initial guesses and a lot of numerical
root finding.

The free energy per area for a film of finite thickness then
becomes~we have assumed equal surface fields on both sur-
faces for simplicity!

F54E
c~d/2!

c~0!

dc @ f B„c…1c#1/22cd24hsc~0!, ~70!

which can be evaluated numerically for the several states
once the values ofc(0), c(d/2), andc are known, to deter-
mine the location of the various transitions in the phase dia-
gram. The resulting phase diagram is shown in Fig. 8, for a
film of thicknessd/j*525.

C. Capillary condensation

Apart from direct numerical calculations, we can give
some simple arguments that clarify the prewetting behavior

of films in the presence of two interfaces separated by a
distanced, as the first-order transition is approached from
above. Consider the case whered is several timesjc , the
bulk correlation length at the transition. When the interfaces
are nonwet, the induced profiles have a thickness of order
j, and thus do not interact appreciably across the film. When
the prewetting transition line is crossed and the interfaces
become wet, their thickness is at first still of orderj, though
perhaps a finite factor larger.

But ast→tc , the wet interfaces become thicker. Equa-
tion ~64! gives some idea of how this occurs, since from it
the profile can be computed as

z~c!52E
c~0!

c

dc/Af B~c!

;E dc/A~t2tc!1const3~c2cc!
2. ~71!

The last crude approximation reflects the fact that as
t→tc , the free energy of the ordered minimum approaches
zero, and so]c/]z very nearly vanishes in the vicinity of
cc . Thus the wet profile thus becomes very thick: the small
difference t2tc cuts off a logarithmic divergence in Eq.
~71!, so we conclude that the wet layer thicknessl grows
logarithmically asl;2j ln(t2tc), and the two wet layers
meet in the middle when

t2tc;exp~2d/j!. ~72!

On the other hand, we may compare the free energy of the
state consisting of two prewetting layers with a state that is
ordered across the entire film, to ask when the thin-film ana-
log of the bulk ordering transition occurs. If we replace the
state with two prewetting layers and a disordered middle
with a state ordered across the film, we give up two inter-
faces between ordered and disordered material at the cost of
ordering the interior of the film.~See Fig. 9.!

The interfacial tension between the ordered and disor-
dered phases is finite at the transition temperaturetc , and is
of orderD f jc , whereD f; f * is the height of the barrier in
the double-well free energy density. The bulk ordering of the
middle of the film costs a free energy per area of order

FIG. 8. Wetting phase diagram for a film of finite thickness
d/j*525, to be compared to Fig. 7. Note the presence of a ‘‘cap-
illary condensation’’ transition between the ordered and wet states
at anh-independent temperature higher than that of the bulk order-
ing temperature, and of the essentially linear surface-field depen-
dence of the ordered to nonwet transition temperature.

FIG. 9. Typical nonwetting, wetting, and film-ordered profiles
~half of full profiles shown, d/ l520), for parameter values
t522.0r * andhs50.225hs* .
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(t2tc) f * d, since the region to be ordered is roughlyd
thick, and the difference between the ordered and disordered
state free energy densities scales as (t2tc) f * . Equating
these two free energies per area, we find that it pays to order
the film to get rid of the interfaces at atwo given by

two2tc'j/d. ~73!

This ordering of the film in advance of the transition is ‘‘cap-
illary condensation,’’ since ultimately it derives from the
presence of surface fields on the boundaries. Ford.j the
capillary condensation condition Eq.~73! is less stringent
than the condition Eq.~72! that the wetting layers begin to
overlap.

Note that the strength of the surface fields does not enter
the estimate of the shift intc , for the case of wet interfaces.
This is because in both the ordered and the wet-interface
states, the structures near the boundaries are basically the
same, being essentially linear response to the surface field
around the ordered state.~See Fig. 9.! Thus the first-order
transition between the wet and ordered states should be es-
sentially independent of surface field, which is observed in
the numerically computed phase diagram Fig. 8.

Now consider the case where nonwet interfaces make a
transition directly to the ordered state. The nonwet interface
consists basically of linear response around the disordered
state, while the ordered state is essentially the same as the
bulk ordered state with a linear-response increase in concen-
tration amplitude at the interfaces.~See Fig. 9.! Thus the free
energy per area difference between these two states is ap-
proximately2hsac1(t2tc) f * d, which leads to a nonwet-
ordered transition at at of

t2tc'hsj* /~hs* d!. ~74!

Thus the nonwet-ordered transition temperature is shifted up-
wards from the bulk ordering temperaturetc by an amount
that varies linearly withhs .

To summarize, we expect ford*j the structure of the
prewetting phase diagram for a thin film should be similar to
that of a semi-infinite sample, except that the bulk ordering
transition is replaced by a capillary condensation line at a
slightly higher temperature, with the nonwet-ordered transi-
tion depending linearly onhs , and the wet-ordered transition
approximately independent ofhs . This is consistent with the
numerically computed phase diagram of Fig. 8.

VI. DISCUSSION

We have considered a variety of interesting effects that
occur when symmetric diblock copolymer melts are confined
to a thin film. The thin film has two main influences on the
melt. First, surface fields create a layer of the preferred
monomer at the surface, which then induces some degree of
layering away from the surface, extending at least a bulk
correlation length into the film. When the surface fields are
sufficiently weak, their effects may be considered in linear
response. For this case, the induced concentration profile
may be computed exactly~within the Brazovskii theory of
the bulk lamellar ordering transition!.

Even for thick films, this result provides a useful route to
measuring a fundamental quantity characterizing the nearly

second-order lamellar transition, namely, the correlation
length j at the transition. Because this length may be quite
long ~many lamellar periods, and hence several thousand
angstroms!, it is difficult to measure using bulk small-angle
neutron scattering with the customary resolution limits. A
reflectivity experiment is likely to give better resolution for
j. Such measurements applied to a series of materials of
different x value and henceN̄ value, which according to
theory governs the magnitude of first-order behavior, could
provide a sensitive test of whether the mean-field limit is
approached asN̄→`. There is some indication of puzzling
experimental results in this respect: judging from existing
reflectivity data, the correlation length from reflectivity in the
relatively high-x system polystyrene-poly~methyl
methacrylate! ~PS-PMMA! is longer than that in the suppos-
edly more mean-field-like poly~ethylene-propylene!-
poly~ethylethylene! ~PEP-PEE! system. This correlates with
another unexplained feature of the experimental phase dia-
grams, that the bicontinuousIA3d phase, which is predicted
to appear in the mean-field limit, is only observed in systems
such as PS-PI~polyisoprene! with smallvalues ofN̄, and not
in PEP-PEE.

The second effect of the thin-film geometry is what has
been termed ‘‘frustration’’ in Ref.@2#: the lamellar period is
forced to be commensurate with the film thickness. Even in
linear response in the disordered phase, there are regions of
layer thickness near half-integer values we then predict to be
unstable to capillary waves. There is a strong analogy here
with spinodal decomposition, in which the thickness of the
film plays the role of a conserved variable, and the free en-
ergy per unit area must be a convex function of thickness for
the film to be stable. The essential physics is that the system
can have a stronger response to the surface fields if the
damped oscillatory concentration profiles from the two sur-
faces meet in the middle of the film with the same phase,
without adjusting the wavelength of the oscillation away
from the preferred value. To test this prediction would re-
quire determination of both the state of film ordering~by
specular reflectivity! and the surface roughness~by grazing
incidence diffraction! under the same conditions.

We have treated copolymer thin films beyond the linear
response regime by means of a gradient expansion, justified
when the lamellar transition is nearly second order. We write
the oscillating concentration profile as a product of a slowly
varying amplitude times a cosine with a slowly varying
phase. If the phase can be neglected~e.g., for films of com-
mensurate thickness!, the resulting effective Hamiltonian is
strongly analogous to that used by Cahn in his treatment of
wetting and especially prewetting phenomena. In the pres-
ence of a single interface, we can have either a ‘‘nonwet’’
induced profile, of small amplitude, or a ‘‘wet’’ induced pro-
file, of amplitude similar to the eventual bulk-ordered state.
There is a line of first-order transitions in the temperature-
surface field plane, terminating in a critical end point, pre-
cisely analogous to the prewetting line and critical point of
Cahn. This prewetting line has been elusive, predicted in
1977 and observed only in 1992 by Taborek and Rutledge
@27#. The copolymer system may afford advantages for
studying this transition:~1! the order parameter~the ampli-
tude of the concentration wave! is not conserved, so trans-
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port of material is not an issue;~2! the underlying concen-
tration oscillation serves as a ‘‘marker’’ to help interpret the
reflectivity data;~3! the calculation of the location of the
prewetting line in terms of the interaction parameterx and
chain lengthN is well controlled, does not involve any
liquid-state theory, andx can be extracted from other experi-
ments.

In the thin film geometry, we have the additional possi-
bility of ‘‘capillary condensation,’’ previously considered by
Nakanishi and Fisher@26# and by Evanset al. @9# in the
context of binary fluid mixtures. The middle of the film or-
ders above the bulk ordering transition in order to~1! elimi-
nate two interfaces between the ‘‘wet’’ state and the disor-
dered middle of the film, if the surface field and temperature
are such that the two interfaces are wet; or~2! to take advan-
tage of the increased order at the surface and resulting favor-
able surface field energy, if the two interfaces are ‘‘nonwet.’’
This capillary condensation transition preempts the bulk or-
dering of the film; we have computed a phase diagram show-
ing the nonwet, wet, and film-ordered phases for a film of
typical thickness.

The effects of commensurability beyond linear response
can be treated in the case of a strongly correlated film. It is
evident that the ‘‘frustration’’ of Ref.@2# must give rise to
shifts in the ordering transition temperature; as the film is
obliged to order at a nonoptimal wave number, the transition
temperature is suppressed. We may once again in this situa-
tion ask whether or not the film in the ordered state is un-
stable with respect to capillary waves, and compute regions
around the half-integer values of film thickness for which the
film would be unstable to capillary waves.
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APPENDIX A: GRADIENT EXPANSION

Imagine an ordered lamellar phase, with a sinusoidal con-
centration variation c0(xW )5a@exp(iqW•xW)1exp(2iqW•xW)#,
which is then weakly modulated in amplitude on a much
longer wavelength:

c~xW ![c0~x!1dc~x!

5@a1b~eik
W
•xW1e2 ikW•xW !#~eiq

W
•xW1e2 iqW •xW !,

uku,,uqu,b!a. ~A1!

The amplitude modulation produces ‘‘sidebands’’ in the
Fourier representation ofc(xW ), which are just the new plane
waves exp@6i(qW6kW)•xW#. We determine the lowest-order
terms in the gradient expansion Eq.~36! by computing the
free energy of the modulated concentration profile to
O(b2) and toO(k2). We do not assume that the amplitude
a of the unmodulated pattern is small, so we work to extend
the self-consistent Brazovskii calculation to this modulated
pattern.

If we simply insert Eq.~75! into Eq.~36!, we obtain to the
relevant order a free energy density

f' f B~a!1$ f B8~a!12mz~a!k2%b21•••. ~A2!

We now perform the corresponding explicit calculation to
determinem(a). Our starting point is the diagrammatic ex-
pression for the Brazovskii free energy of an arbitrary or-
dered state, Fig. 10, with the corresponding self-consistent
equation for the propagatorg, represented diagrammatically
in Fig. 11 @11,14#. @The thin and thick lines represent the
bare and self-consistent propagatorsg0 and g, the open
circles represent factors ofg0

21(q), and the thick dots repre-
sent the ordered concentration field.# Note that for nonperi-
odic concentration fields, the propagatorg is not diagonal in
Fourier space.

A systematic expansion of these diagrams toO(b2) gives
for the change in the free energy the diagrammatic expres-
sion of Fig. 12, in which the legs ending in a ‘‘T’’ represent
factors of the perturbationdc to the concentration field.~The
set of diagrams of Fig. 12 could almost have been written

FIG. 10. Diagrammatic expansion for the Brazovskii free en-
ergy. Thick lines represent the self-consistent propagatorg, open
circles represent factors ofg0

21(q), and thick dots represent the
expectation value of the concentration field. Signs, combinatorical
factors, and factors of the quartic couplingl are indicated.

FIG. 11. Diagrammatic equation for the self-consistent propaga-
tor g ~thick line! in terms of the bare propagator
g05@t1(q2q0)

2#21 ~thin line! and the ordered-state concentra-
tion field ~thick dot!.

FIG. 12. Diagrammatic expansion of the Brazovskii free energy
to second order in the perturbationdc(z) of the concentration field
away from that in a bulk equilibrium state. Diagrammar as in Figs.
10 and 11, with legs ending in a ‘‘T’’ representing factors ofdc.

54 3807WETTING DESCRIPTION OF BLOCK COPOLYMER THIN FILMS



down as a starting point, as the obvious set of connected
diagrams with no external lines, second order indc, using
the quartic vertex of the Brazovskii Hamiltonian and the self-
consistent propagator.!

The series of bubble diagrams represented by the first two
terms in brackets can be summed in terms of the single-
bubble integral, given by

P~kW ![E d3q

~2p!3
@r1~q2q0!

2#21@r1~p2q0!
2#21,

pW [qW 1kW . ~A3!

In terms of the bubble-sumx(kW )[@11lP(kW )/2#21, the
diagrams of Fig. 12 give

d f52H t1~ ukW1qW u2q0!
21

la

Ar
1
3

2
la212la2x~kW !J b2.

~A4!

Using Eq.~7! for the self-consistent propagator and the equa-
tion of state of a uniformly ordered system, we simplify our
result as

d f5$ f B9~a!12~ ukW1qW u2q0!
214la2@x~kW !2x~0!#%b2.

~A5!

For small r such thatq0
2/r@1 ~the nearly second-order

Brazovskii transition!, the integralP(kW ) can be evaluated for
small k as

P~k!'P0@12k2/~4r !#, P0[ar23/2, ~A6!

which leads to

x~k!'x0@11lP0x0k
2/~8r !#, x0[~11lP0/2!21.

~A7!

In this paper, we only consider longitudinal modulations
of the concentration wave amplitude, for which case we find
@using Eq.~81! in Eq. ~79! and comparing to Eq.~76!#,

mz~ ã!511
ã2

4r̃ 5/2@11~1/2! r̃ 23/2#2
, ~A8!

wherer is implicitly a function ofa andt through Eq.~7!.
The mild amplitude dependence ofmz(a) is shown in Fig.
13; mz(a) varies by only about 20% from the naive value
mz(a)51 @arising from the straightforward expansion of the
second term in Eq.~79!# asa varies over the relevant range.
Having carefully computed this fluctuation contribution, we
neglect it in the remainder of our calculations of film pro-
files.

However, our treatment here of the effect of fluctuations
on the square-gradient coefficient has broader implications,
when long-wavelength variations of the amplitude with wave
vector perpendicular to the ordering directions are consid-
ered. To see this, we examine the three terms of Eq.~79! in
turn. First, the term proportional tof B9(a) simply results
from the fact that in a modulated state, the amplitude varies
in space, so that the local free energy density becomes
f B@a12bcos(kW•xW)#'fB(a)12b2fB9(a)cos(kW•xW)

2, which spa-
tially averaged becomesf B(a)1 f B9(a)b2.

Next, if the amplitudea of the unmodulated pattern is
itself small, we may evaluate the free energy to quadratic
order in all the Fourier components of the concentration
field, i.e., to quadratic order in botha andb. When we do
that, the dependence on wave vector of the modulation
comes from evaluating~1/2!*dq@r1(q2q0)

2#c(q)c(2q),
and depends only on the wave number of each Fourier com-
ponent separately. In this approximation, the modulated pat-
tern is a sum of Fourier modes each of which contributes
separately to the free energy. As a result, longitudinal
(kW iqW ) and transverse (kW'qW ) modulations ofweakpatterns
scale differently, since

~ ukW1qW u2q0!
2'H k4/~4q02!, kW'qW

k2, kW iqW .
~A9!

This leads to thicknesses and interfacial tensions for inter-
faces parallel and perpendicular to the layering direction that
scale differently as the transition becomes more weakly first
order. This result is the origin of the claim in a recent paper
by Hohenberg and Swift@28# that the interfacial tension be-
tween ordered and disordered lamellar phases is highly an-
isotropic, being much smaller for interfaces perpendicular to
the layers~corresponding to transverse modulation of the
concentration wave!.

However, consider now the third term of Eq.~79!, which
is only present if we go beyond the quadratic order calcula-
tion, i.e., for strong initial concentration patterns. This term
is O(k2) regardless of the angle betweenkW andqW . Further-
more, at the first-order transition, using the scaling results
Eq. ~8!, the coefficientslP0, x0, anda

2l/r in the ordered
state are all of order unity. By the same approach leading the
Eq. ~82!, we can extract the square-gradient coefficient for
arbitrary direction ofkW as

mkW~a!5~ k̂•q̂0!
21

a2

4r 5/2@11~1/2!r23/2#2
, ~A10!

FIG. 13. The square-gradient coefficientmz(a) depends only
mildly on the ordered-state amplitudea over the relevant range of
a ~curve shown for the transition temperature oft522.031r * , at
which the ordered-state amplitude isa51.455a* ).
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where the second, isotropic term arises from the sum of
bubble diagrams, which is the origin of the third term of Eq.
~79!.

In the ordered state at the transition,m k̂(a)50.215 forkW

perpendicular toqW . In other words, for the uniform ordered
state near the transition, the square-gradient term and hence
the interfacial tension between the ordered and disordered
states is only mildly anisotropic. The conclusion of Hohen-
berg and Swift that the nucleation droplets of lamellar phase
are increasingly anisotropic for more weakly first-order tran-
sitions would appear then to be incorrect.

APPENDIX B: LINEAR RESPONSE

Recall from the main text that the linear-response results
for the concentration and free energy can be written as

c~z!5
2

d(m cos~pmz/d!g~m,0!@hl1~21!mhr #, ~B1!

F52
A

d(m g~m,0!@hl1~21!mhr #
2. ~B2!

Our task is to evaluate the sums appearing in Eq.~85! and
~86!, which we do with the use of the identity

(
k
e2 ixkv5

2p

D (
l

d~v2v l !, xk[kD, v l[
2p l

D
.

~B3!

Here both sums are taken over all integers. This identity can
be understood as follows: the set of plane waves
$exp(2ixkv)% is a complete set on the interval
v:(2p/D,p/D), and hence proportional tod(v) on that
interval. Since each summand is periodic on this interval, the
entire sum must be periodic, so the sum outside the interval
must be the periodic continuation of thed function. The
proportionality constant is found by integrating both sides
with D/(2p)*2p/D

p/D dvexp(ixjv) and using orthogonality of
the plane waves.

Integrating the identity Eq. ~87! with *dv/
(2p) f̃ (v) @ f̃ (v) denotes the Fourier transform off (x)#
gives

(
k

f ~xk!5
1

D(
l
f̃ ~v l !. ~B4!

Hence we may transform an infinite sum from direct space to
Fourier space. For the sums of interest here, the Fourier
transforms of the original summands turn out to be exponen-
tial functions, which are simple to sum.

For the linear-response profile, we have

c~z!5
2

d
ReH(

m
~hle

ikmz1hre
ikm~d2z!!

4km
2

4q0
2r1~km

2 2q0
2!2 J ,

~B5!

where km[pm/d. Note how the terms in response to the
fields at z50 and z5d are related by the symmetry
z→d2z. Because the summands are even inm, we may
extend the sum to negativem and divide by two~no contri-
bution fromm50).

We use the following Fourier transform:

E dk

2p

4k2eikx

4q0
2r1~k22q0

2!2
5j/q0Re$kexp~ ikuxu!%.

~B6!

Herek is the solution with positive real part to the equation

k25q0
212iq0j

21. ~B7!

Using Eq.~88! with D52d, we have

c~z!5
2j

q0
ReH k(

j
~hle

ikuz1yj u1hre
ikud2z1yj u!J ,

yj[2d j . ~B8!

Taking z ranging from zero tod, we can easily separate the
absolute-value exponents into cases, and perform the result-
ing infinite geometric sums, with the final result

c~z!5
2j

q0
ReH ihlkcosk~d2z!

sinkd
1
ihrkcoskz

sinkd J . ~B9!

Now consider the sum for the linear-response free energy,
Eq. ~86!. Expanding the factor @hl1(21)mhr #

2

5(hl
21hr

2)12(21)mhlhr , we see that the free energy is a
sum of the same form as the concentration profile atz50,
with hl→hl

21hr
2 and hr→2hlhr . Hence we read off the

result as

F52
Aj

q0
Re$ i ~hl

21hr
2!kcotkd12ihlhrkcsckd%.

~B10!
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